Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema.
نویسندگان
چکیده
BACKGROUND Pulmonary hypertension is a hallmark of high-altitude pulmonary edema and may contribute to its pathogenesis. Cardiovascular adjustments to hypoxia are mediated, at least in part, by the sympathetic nervous system, and sympathetic activation promotes pulmonary vasoconstriction and alveolar fluid flooding in experimental animals. METHODS AND RESULTS We measured sympathetic nerve activity (using intraneural microelectrodes) in 8 mountaineers susceptible to high-altitude pulmonary edema and 7 mountaineers resistant to this condition during short-term hypoxic breathing at low altitude and at rest at a high-altitude laboratory (4559 m). We also measured systolic pulmonary artery pressure to examine the relationship between sympathetic activation and pulmonary vasoconstriction. In subjects prone to pulmonary edema, short-term hypoxic breathing at low altitude evoked comparable hypoxemia but a 2- to 3-times-larger increase in the rate of the sympathetic nerve discharge than in subjects resistant to edema (P<0.001). At high altitude, in subjects prone to edema, the increase in the mean+/-SE sympathetic firing rate was >2 times larger than in those resistant to edema (36+/-7 versus 15+/-4 bursts per minute, P<0.001) and preceded the development of lung edema. We observed a direct relationship between sympathetic nerve activity and pulmonary artery pressure measured at low and high altitude in the 2 groups (r=0.83, P<0.0001). CONCLUSIONS With the use of direct measurements of postganglionic sympathetic nerve discharge, these data provide the first evidence for an exaggerated sympathetic activation in subjects prone to high-altitude pulmonary edema both during short-term hypoxic breathing at low altitude and during actual high-altitude exposure. Sympathetic overactivation may contribute to high-altitude pulmonary edema.
منابع مشابه
Chronic Mountain Sickness (Cms) Misdiagnosed As High Altitude Cerebral Edema (Hace) At Extreme Altitude (6400 M/21000 Ft)
Introduction: Chronic mountain sickness (CMS) represents a syndrome of secondary polycythemia along with thrombocytopenia, altered hemorheology, pulmonary and systemic hypertension, and congestive heart failure, occurring due to hypobaric hypoxia-anoxia-induced erythropoiesis reported in both native mountain residents and new climbers after prolonged stays at high and extreme a...
متن کاملMechanisms and drug therapy of pulmonary hypertension at high altitude.
Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endotheli...
متن کاملIdentification of individuals susceptible to high-altitude pulmonary oedema at low altitude.
Individuals susceptible to high-altitude pulmonary oedema (HAPE) are characterised by an abnormal increase of pulmonary artery systolic pressure (PASP) in hypoxia and during normoxic exercise, reduced hypoxic ventilatory response, and smaller lung volume. In 37 mountaineers with well-documented altitude tolerance, it was investigated whether any combination of these noninvasive measurements, in...
متن کاملHigh altitude impairs nasal transepithelial sodium transport in HAPE-prone subjects.
High-altitude pulmonary oedema (HAPE) occurs in predisposed individuals at altitudes >2,500 m. Defective alveolar fluid clearance secondary to a constitutive impairment of the respiratory transepithelial sodium transport contributes to its pathogenesis. Hypoxia impairs the transepithelial sodium transport in alveolar epithelial type II cells in vitro. If this impairment is also present in vivo,...
متن کاملVentilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema.
Reduced tolerance to high altitude may be associated with a low ventilatory and an increased pulmonary vascular response to hypoxia. We therefore, examined whether individuals susceptible to acute mountain sickness (AMS) or high altitude pulmonary oedema (HAPE) could be identified by noninvasive measurements of these parameters at low altitude. Ventilatory response to hypoxia (HVR) and hypercap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 99 13 شماره
صفحات -
تاریخ انتشار 1999